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Abstract. The purpose of this work is to investigate the electronic structure of two-dimensional
structurally disordered solids by means of a method based on multiple-scattering theory. The
theoretical technique is applied to some two-dimensional models which can be varied from the
limit of a perfect to a completely disordered structure. The models are continuous structural
networks with different-fold coordinations of atoms in planar structures. The spectral density
is determined through a self-consistent approach. Using the spectral density, the convergence
of the technique is analysed through calculations of the density of electronic states, and the
variation of the density of electronic states with respect to varying disorder in the structure is
determined. In particular, the convergence of the technique for the calculation of the density
of electronic states as a function of the size of the matrix representation used is confirmed and
it is shown that the degree of disorder in two-dimensional systems significantly influences the
density of electronic states.

1. Introduction

Although significant progress has been made in both theoretical and experimental aspects
of disordered systems, many problems remain [1–7]. Progress in the study of these
systems, in particular structurally disordered systems, has been relatively slow and delayed
in comparison with that of ordered (crystalline) materials. Two principal reasons for this
delay are the complexity of the mathematical problems naturally arising in the study
of such systems [8]. In part, the increasing interest in disordered systems reflects the
continuing growth in the technological importance of materials such as alloys, amorphous
semiconductors, liquid metals, and glasses and their application in photovoltaic cells, thin-
film devices, and so on.

For disordered systems, the conventional concepts (Bloch’s theorem, quasi-
momentumk, unit cell, Brillouin zone, symmetry, and wave numbers) are no longer valid,
and familiar constructs such as the dispersion relation are no longer defined. Because
there is such a difference between excitations in ordered and disordered systems one finds
that methods which have proved quite adequate for ordered crystals generally yield little
information on disordered systems. For this reason, a variety of new methods have inevitably
been devised and used. One example is the development of sophisticated perturbation
techniques in many-body theory, in particular the use of Green functions and the total
scattering matrix.

In this paper we shall consider only the density of electronic states (DOS). The
manifestation of disorder in the electronic states can appear in various forms: states may
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occur inside the band gaps of the ordered system [9], bands broaden as the band edges shift,
singularities smear out if there is no long-range order, and tails may appear in the DOS. It
is also clear that short-range order (SRO) plays an important role in determining the DOS,
e.g. fluctuations in SRO, such as bond angle distortions, lead to tailing of states into the
gap at the band edges. The coherent potential approximation has not proved effective for
structural disorder, and it is desirable to have an approach which does not depend on finite
boundary conditions.

In this work we shall investigate the behaviour of two-dimensional disordered systems
based on some simple models. Two-dimensional systems can be realized in layered
compounds, such as graphite intercalation compounds, in which the atomic layers are
widely separated and weakly interacting. In experimental studies, the inversion layers
used in the quantized Hall effect provide an example of two-dimensional systems important
in technology as do metal-oxide–semiconductor space charge layers and semiconductor
heterostructures [10, 11].

We shall calculate the DOS for different two-dimensional structurally disordered models,
for example with various numbers of near neighbours. The calculation is based on a method
due to Beeby and Hayes [12] which uses multiple-scattering theory and can be used to
calculate the electronic structure of any disordered system. Since the technique is new in
application to two-dimensional disordered systems, the reliability of the method will first be
demonstrated by considering its convergence. Then the variation of the DOS with varying
structural disorder will be calculated for some well known two-dimensional models. This
works also serves to underpin the three-dimensional studies [12–14], for which it is difficult
to explore convergence properties.

In section 2 the formal theory underlying the calculations will be outlined and the
essential equations given specifically for the case of two-dimensional systems. This is
extended and illustrated in section 3 with the introduction of a suitable notation for
describing the disorder. It is shown in section 4 how the problem may be reduced to
a numerically tractable form. In section 5 a suitable model potential is introduced and
numerical procedures developed. The DOS calculations are then presented in section 6,
demonstrating that the method converges and that useful results can be obtained. The paper
ends with a brief discussion.

2. The formal theory

The BH method, based on multiple-scattering theory for non-overlapping muffin-tin
potentials, will be outlined in this section. It was applied [13, 14] to tetrahedrally bonded
disordered systems in three dimensions, which has given confidence for application to other
systems, in particular, for systems which possess short-range order (SRO).

The mathematical procedures of multiple-scattering theory for two-dimensional
disordered systems were developed in [15] and follow those for three dimensions [16].
The DOS can be calculated from the imaginary part of the total scattering matrix as the
integral over energy of the spectral density [16],

ρ(k, E) = −(π�0)
−1(E − k2)−2 Im〈T(k)〉 (1)

where E is the electron energy,k is the electron momentum, and�0 is the volume of
the system. The average in this equation is over a suitable statistical ensemble which
represents the disordered system.T(k), the total scattering matrix, can be expanded for a
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two-dimensional disordered system in the series

T(k) = 2π
∑
mm′

(−i)m−m′
exp[i(m − m′)θk]{t(k, k) +

∑
b( 6=a)

t(k, κ)Gab(κ, k)t(κ, k)

+
∑

b(6=a),c(6=b)

t(k, κ)Gab(κ, k)t(κ, κ)Gbc(κ, k)t(κ, k) + · · ·}mm′ (2)

where κ = E1/2, and the elements of eacht and G are matrices labelled by angular
momentum indicesm andm′. The t-matrix transforms are defined by

tmm′(p, p′) = 1

2π

∫
Jm(pr) e−imθr t (r, r′)Jm′(p′r ′) e−im′θr′ dr dr. (3)

If the potential is circularly symmetric,tmm′ = tmδmm′ , and sot is diagonal in angular
momentum. The elements of the matrixG can be shown to be [15]

Gab
mm′ = −

∑
(−i)m

′−m+νJν(kR)Km′−m(µR) ei(m′−m−ν)θR eiνθk . (4)

We shall confine ourselves to the energy rangeE < 0 for which µ = (−E)1/2 is real. R is
the distance between the two atoms and the bond direction is denoted byθR. Then

Im〈T(k)〉 = 2π Im
∑

(−i)m−m′
exp[i(m − m′)θk][ tm(k, iµ)/tm(iµ, iµ)]

×
〈 ∑

a

Fa(iµ, k)

〉
mm′

tm′(iµ, iµ)[tm′(iµ, k)/tm′(iµ, iµ)] (5)

whereFa contains all those multiple-atom scattering paths in which the electron starts at
atoma and is defined by [12]

Fa = 1 +
∑

tGab +
∑

tGabtGbc + · · · = 1 +
∑

tGabFb. (6)

Fa depends implicitly on the positions of all the neighbouring atoms and modifies the free
electron propagator to take into account all scattering sequences. These defining equations
will be applied in the next section to the specific physical systems of interest.

3. Application to two-dimensional disordered systems

To demonstrate the application of the technique to two-dimensional disordered systems, we
shall begin by defining the self-consistent functionFa given by equation (6) for a general
model in terms of some variables describing each atomic environment. The averages over
the disordered structures will then be performed for this model and the resultant matrix
equations solved to give calculated DOS.

We illustrates the procedure initially by using a continuous structural network with
threefold coordination of atoms in a planar structure related to the honeycomb lattice, and
the bond lengths between two atoms being treated as always the same. This corresponds
to neglecting variations in the motion of electrons between pairs of atoms, often referred
to as hopping. The disorder manifests itself in the bond angles, giving a structure with
rings of various sizes. The disorder in such a system can be described in a statistical way
by defining a distribution function on the bond angles which approximates the discrete
distribution of bond angles arising from the actual ring statistics. To describe each atom
and its environment, we define a set of coordinate axes in which the associated atomic
environment has some orientation specified by angles. The propagator modifierF can then
be written as a function of all the angles required to specify the system. However in more
complicated structurally disordered models the variable parameters could be extended by
including other variables such as bond lengths or the number and species of neighbours.
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The local axis that we have chosen for atom a, illustrated in figure 1, is directed to
a nearest-neighbour atom b in thexy plane. The deviation of this local axis from the
coordinate axis is labelledθa on the model. We assume that the first scattering is taking
place at atom (or ion) a, and after scattering there the electron may propagate to a nearest
neighbour atom, such as atom b, and scatter there. This sequence of scattering goes on
throughout the system as specified by equation (6). The contribution to the density of states
of these sequences from atom a depends on the positions of the other potentials, such as the
atom b, relative to a, and the dominant part forE < 0 is related to the nearest-neighbour
atoms. Therefore, for a particular atom, the functionF can be approximately described by
treating it as a function only of its local set of angles. Averaging over the spread of distant
angles but keeping the local angles fixed, the scattering function corresponding to atom a
can be written in terms of its near neighbour, atom b, as

〈Fa〉a = 1 +
∑

t〈GabFb〉a (7)

where the subscripta on the averages indicates that the angles at a are fixed. Note that this
implies that the positions of the nearest neighbours, b, of a are fixed.

Figure 1. A simple model with threefold coordinated structure.

We shall approximate eachFa by a Fourier series involving the local angles only so
that

Fa(θa, θ2, θ3) =
∞∑

mi=−∞
Am e(im1θa+im2θ2+im3θ3) (8)

and

Fa(φb, φ2, φ3) =
∞∑

m′
i=−∞

Am e(im′
1φb+im′

2φ2+im′
3φ3) (9)

using the notation of figure 1. The subscriptm on A represents the vector (m1, m2, m3) and
it is essential to note that these angular indices are distinct from those of equations (2)–(5),
which are implicit inF, A, andG. Themi are integers i.e. 0, ±1, ±2, . . . . The propagator
Gab in equation (7) is given by equation (4) withR the magnitude ofRb − Ra taken to be
the same for all bonds.Gab depends only on the nearest-neighbour distribution, which is
invariant in equation (7) soGab is outside the structural average. Then the only function
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on the right hand-side of equation (7) related to the disorder associated with atom a is the
function Fb, which is required to be averaged over the anglesφ.

To implement the averaging, a probability functionP(θi), for the angles around atom a,
as in figure 1, can be introduced in terms of some parameters describing the system under
consideration. In this work a Gaussian form will be taken,P(θi) = N e−(θi−2π/n)2/ω2

. This
function describes the probability of finding a particlei betweenθi andθi + dθi , whereN

is the normalization coefficient,n is the coordination number (e.g for a triangular lattice
n = 6, square latticen = 4), andω is a parameter representing the degree of disorder.ω

can be varied from 0.0 to∞, i.e from complete order to a circularly symmetric distribution
which corresponds to complete disorder.

To average equation (9) one is required to multiply the equation by the probability
functionsP(φi), and to integrate over the anglesφ1, φ2, etc. This gives

〈Fb〉 =
∑

Am eim′
1θb0(m′

1, m
′
2, . . . ; ω). (10)

Here0(m′
1, m

′
2 . . . ; ω) will be called the structural factor and incorporates the terms related

to the rotational angles and disorder parameters. This equation is quite general and becomes,
for example, for the model in figure 1, in whichn = 3,

0(m′
1, m

′
2, m

′
3; ω) = e−iπm′

1 e−i2π(m′
1+m′

2+m′
3)/3

× exp
ω2

4

[
(m′

1 + m′
2 + m′

3)
2

3
− (m′2

1 + m′2
2 + m′2

3 )

]
. (11)

Finally, equation (7) becomes

Am1m2m3 = δm1,0δm2,0δm3,01 −
∑

νm′
1m

′
2m

′
3m

′′
tGνm′′Am′

1m
′
2m

′
3
0(m′

1, m
′
2, m

′
3; ω)δ(m′

1 + m′′ − ν − m1)

×(δm2,0δm3,0 + δm1,m2δm3,0 + δm1,m2δm1,m3) (12)

where Gνm′′ = (−i)m
′′+νJν(kR)Km′′(µR) and the two types of index are linked because

m′′ = m′ − m, as in equation (4). The three terms in the final brackets originate from the
three neighbours. Thus the coefficientA satisfies a matrix equation and givesF through
equation (8). Not all of the columns ofAm are required because the spectral density is
independent of the direction ofk for a system which has no preferred axis. Therefore, the
direction ofk can be set to thex direction in the laboratory coordinate frame.

We write equation (12) in matrix form to evaluate its eigenvalues and eigenvectors for
calculating the spectral density. Then

A = e + MA (13)

whereA can be visualized as a column vector and each element of the column is labelled
by indicesm1, m2, m3 from the expansion introduced in equation (8). All the quantities in
equation (13) have elements which are matrices. For convenience the indices are dropped
and the structural factors are incorporated in the matrixM. M is a complex (throughG)
and asymmetric matrix with analogous indices expressing the coupling among the elements
of A. Physically its eigenvalues must be real and this can be confirmed computationally.
It will be shown in the next section that it is possible to transformM to a symmetric real
matrix. The solution of equation (13) can be found in terms of the eigenvalues,λi , and left
and right eigenvectors,uT

i andui , of M:

A =
∑

i

ui (1 − λi)
−1uT

i · e (14)
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wheree is a column vector with elements which are equal to one whenm = 0 and zero
otherwise.ρ(k, E) depends on the imaginary part ofA000 and is non-zero only for values
of k andE such thatλi = 1, giving∫

ρ(k, E) dθk = − 1

π

1

(E − k2)2

∑
mm′

[
sm(k)

sm(iµ)

] [
sm′(k)

sm′(iµ)

]
sm(iµ)

π/2
Im[A000]mm′ (15)

where

Im A000 = −π
∑

i

[ui ]000δ(E − Ei(k))(∂λi/∂E)−1(uT
i · e). (16)

The functions is related to the scattering potential and must be derived from the chosen
potential. This will be discussed in section 5. Before proceeding with such a calculation,
the matrix equation (12) needs to be put into a more readily solvable form, symmetric form.

4. Matrix reduction to computable and symmetric form

In this section we shall transform equation (12) into a computable and symmetric form
before solving it numerically. To do this let us define a new vector by

3m1 =
∑
m2m3

0(m1, m2, m3; ω)Am1,m2,m3. (17)

This then satisfies the equation

3m1 = δm1,01 − γm1t
∑

νm′′m′
1

Gνm′′(−)m
′
1 δ(m′

1 + m′′ − ν − m1)3m′
1

(18)

where

γm1 = 0(m1, 0, 0; ω) + 0(m1, m1, 0; ω) + 0(m1, m1, m1; ω) (19)

is real and positive. Once3 is formed the values ofA can be recovered using equations (17)
and (12). In order to make the matrix on the right-hand side symmetric a further
transformation

�m1 = (−i)m1+m3m1/(γm1/γ0)
1/2 (20)

gives

�m1 = δm1,01 − tγ 1/2
m1

∑
m′

1,m
′′
(−i)m

′′
Jm′

1+m′′−m1(kR)Km′′(µR)(−)γ
1/2
m′

1
�m′

1
(21)

where the matrix is Hermitian ifm′′ 6= 0 but becomes real if only the s-wave case,
m = m′ = 0, is considered. The imaginary part ofA000 from (12) and (17) is just Im30/γ0

and so becomes Im�0(−i)m/γ0 using (20). The required result, replacing (15), is of exactly
the same form but the eigenvalues and eigenvectors now refer to the symmetric matrix on
the right-hand side of (21).

5. Density of states calculations for different structures

In this section the numerical procedures just described will be applied to some specific
examples. A circularly symmetric potential will be used and it will be assumed that only
s-wave scattering is significant. In the general case, as has been noted earlier,t and the
coefficientsG, and henceA, are all matrices in the angular momentum representation. For
a circularly symmetric potential the matrixt is diagonal in angular momentum, butG is
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not, describing propagation from one atom site to another and giving rise to effects such
as s–p hybridization. By considering only s-wave scattering only those terms for which
m, m′ = (0, 0) arise. Thus the expression forGνm′′ in equation (1) becomes

Gνm′′ = −(−i)νJν(kR)K0(µR)δm′′,0. (22)

Hence the momentum dependence of the matrix is due toJm′
1−m1(kR) and the energy

dependence takes the form

U(E) = t0(iµ, iµ)K0(µR). (23)

Finally, we have a matrix equation for the vectorΩ, which is now a simple vector;

�m1 = δm1,0 − t0
∑
m′

1

√
γm1

√
γm′

1
Jm′

1−m1(kR)K0(µR)(−)m
′
1�m′

1

= δm1,0 + U(E)
∑
m1

Hm1,m1′ (k)�m1′ . (24)

This is the general expression that we shall use to evaluate the eigenvalues and eigenvectors,
from which we will find the electronic band structure and calculate the DOS.

Before presenting the detailed results it is useful to consider the approximation of taking
the circularly symmetric average, i.eω large in P(2i), which means that we retain only
the termν = 0. Then equation (24) has the solution

�0 = (1 − U(E)H00(k))−1. (25)

Taking the case ofn = 3, γm1′ = 2 cos(2m′
1π/3) e−ω2m′2

1 /6 +1, γ0 = 3 andH00 = −3J0(kR).
The imaginary part of the solution is then

Im �0 = −πδ(E − E(k))H(k)(∂U/∂E)−1. (26)

For a narrow s band andE � 0 the energy dependence is given byU(E) ∼= W/(E −
Eb) [12], where Eb is the bound state energy of a single muffin-tin potential andW

is a parameter related to the band width. The general limits on the band can simply
be found from a perfect hexagonal lattice or the so-called honeycomb lattice for which
n = 3. It is known in general that the energy in the tight-binding approximation is given
asEk

∼= E0 ± W |6 eik·R|, which can be expanded in a power series neark = 0 and from
which the band width can be predicted. The bottom of the band is neark = 0 with energy
E ∼= E0 − 3W . The top of the band occurs near the corners of the Brillion zone (BZ) with
energyE ∼= E0 + 3W .

When an explicit potential is used, the functionss(k) and s(iµ) used in equation (15)
must be evaluated. An example of this calculation will now be presented. We shall consider
a square well potential of circular form and radiusrsw. Because of the muffin-tin requirement
rsw 6 R/2. Thusv(r) = Vsw < 0 for r < rsw andv(r) = 0 if r > rsw. The radial solution
of the Schr̈odinger equation for a two-dimensional potential can be written as

R0(r) = BJ0(ξr) r < rsw (27a)

and

R0(r) = CJ0(iµr) + DY0(iµr) r > rsw (27b)

whereξ = √−(E − Vsw) andµ = √−E. The energy range of interest isVsw < E < 0 so
that bothξ andµ are real. For convenience we have taken ¯h2/2m = 1. Yn(z) is a Bessel
function of the second kind (or Weber’s function). In addition to these two equations, the
radial wave function can also be defined in a different form as in [15] and [16]. When
integrated, this equation yields forr > rsw

s0(r)/Vsw(r) = −(π/2)I0(µr) − K0(µr)s0(iµ) (28)
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whereI0(µr) andK0(µr) are modified Bessel functions [17]. SinceR0(r) ∝ sm(r)/Vsw(r),
one can obtain the coefficientsB, C, andD by using the boundary conditions, giving

B = −(π/2)[I0(µrsw) + (2/π)s0(iµ)K0(µrsw)]

C = −(π/2)[1 + is0(iµ)]

D = (π/2)s0(iµ). (29)

Hence, using these coefficients,s0(r) for r < rsw is

s0(r) = −(π/2)Vsw[[I0(µrsw) + (2/π)s0(iµ)K0(µrsw)]/J0(ξrsw)]J0(ξr). (30)

The functionss0(iµ) ands0(k) are then

s0(iµ) = (π/2)rswI0(µrsw)[µI1(µrsw)J0(ξrsw) + ξJ1(ξrsw)I0(µrsw)]/{J0(ξrsw)

−rswK0(µrsw)[µI1(µrsw)J0(ξrsw) + ξJ1(ξrsw)I0(µrsw)]} (31)

and

s0(k) = VswBrsw

k2 − ξ2
[kJ1(krsw)J0(ξrsw) − ξJ1(ξrsw)J0(krsw)]. (32)

Finally, the relation betweens0(iµ) ands0(k) can be given as

s0(k)

s0(iµ)
= Vsw

k2 − ξ2

[
kJ1(krsw)J0(ξrsw) − ξJ1(ξrsw)J0(krsw)

µI1(µrsw)J0(ξrsw) + ξJ1(ξrsw)I0(µrsw)

]
. (33)

In conclusion, having determined all the terms of the spectral density, we have arrived
at an explicit form of (15):

ρ(k, E) = V 2
sw

(E − k2)2(k2 − ξ2)2

[
kJ1(krsw)J0(ξrsw) − ξJ1(ξrsw)J0(krsw)

µI1(µrsw)J0(ξrsw) + ξJ1(ξrsw)I0(µrsw)

]2

×
∑

i

δ(E − Ei(k))[λi(k)∂U/∂E]−1[ui · e]2 (34)

whereλi(k)U(E) = 1 for E = E(k). Here we also need to specify the band width,W , of
electron states by using the scattering matrix,t0(iµ, iµ) of the potential.

We would prefer to take, as far as possible, appropriate values for the atomic parameters,
such as the strength of the potential and the bond length, even though we investigate the
electronic structure of a model rather than a particular material. However, most published
calculations use the tight-binding limit, which is only reached for real two-dimensional
potentials by making them rather deep. Accordingly, in the following calculations we
shall take the potential radiusr = 0.5 (au) and the bond length between two potentials
R = 2.0 (au), which results in a ground state energy ofE0 = −30 (au). In this case,
the atoms or ions are far apart from each other and so these assumptions lead to a very
narrow band of allowed states around the atomic ground state energy,E0. An alternative
approach [15] for model calculations is to use adelta-function-likepotential for which
equation (33) becomes

s0(k)

s0(iµ)
= J0(kr)

I0(µr)
(35)

leading to a much simpler form for equation (34):

ρ(k, E) = 1

(E − k2)2

[
J0(kr)

I0(µr)

]2 ∑
∂(E − Ei(k))[λi(k)∂U/∂E)]−1[ui · e]2. (36)

As an initial illustration of the results, consider the limiting case of circular averaging.
Equation (26) then gives one eigenvalue for eachk. The eigenvalues and the DOS are
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plotted in figure 2. At the bottom of the band the DOS is free-electron-like, i.e., for two
dimensions constant, nearer the bound state energy the DOS is dominated by a series
of peaks which originate from thek values where∂E/∂k = 0. A slight broadening
has been used in the figure to give a better qualitative indication of the structure of the
DOS.

Figure 2. The DOS for the circularly symmetric average.

Figure 3. The DOS for a honeycomb perfect lattice model; disorder(ω) = 0.
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Figure 4. The convergence of the DOS for disordered structures (ω = 0.1) with respect to
the matrix sizes: (a)N × N = 31 × 31; (b) N × N = 51 × 51; (c) N × N = 101× 101;
(d) N × N = 301× 301; (e)N × N = 401× 401.

6. Results

In this section some illustrative results of the application of the procedure will be presented.
Before considering the case of disorder, it is useful to confirm that the approach works for
the perfectly ordered case, for which the theory should be equally correct. Accordingly,
we have first calculated the perfect lattice case by taking the disorder parameterω = 0.0,
to compare the curves to results which are expected and already well known. It can be
seen in figure 3 that the DOS curves corresponding to a perfect honeycomb lattice structure
agree well with the theoretical expectation (see, for example, [18]). Similar agreement is
found for other lattice structures. The structure on this curve results from the size of the
matrix used and would disappear if sufficient eigenvalues (i.e. sufficiently large matrices)
were taken.

To investigate this convergence we have performed a series of calculations with
increasing matrix size, in other words taking more eigenvalues and eigenvectors. This
corresponds to using more accurate representations of the desired structure. In this analysis
we have chosen a particular disorder value,ω = 0.1 (rad), for which we have evaluated
the eigenvectors and eigenvalues for various sizes of the matrix. The smallest matrix used
was 31× 31 and the largest 401× 401. The results are presented in figure 4, again for



Electronic structure of 2D disordered systems 991

Figure 5. The DOS for honeycomb-lattice-like structural disorder (ω): (a)ω = 0.0; (b)ω = 0.1;
(c) ω = 0.2; (d) ω = 0.4; (e) ω = 0.7.

the honeycomb structure. It can be seen that there is little change beyond 101× 101
and no change beyond 301× 301. This confirms an unproved expectation in BH that the
method would converge; it was not possible to treat sufficiently large matrices to confirm
this directly in the three-dimensional case.

The effect of varying disorder is shown in figure 5, using 301 eigenvalues. The top of
the band is lowered in energy, as can be predicted from the wavefunctions for such states,
which change sign between neighbouring atoms in the perfect lattice. This phase matching
cannot be achieved in the disordered case. Similar arguments support the movement of
states from the bottom of the band towards the bound state energy. A free-electron-like
DOS of lower magnitude remains at the extreme bottom of the band. Some of the structure
in these curves undoubtedly arises from the simplicity of the structural model used. Notice
that even at large disorder the middle of the band is not significantly filled in.

A similar set of curves for four near neighbours is shown in figure 6. The same effects
are seen at the bottom of the band and for large disorder the curve has a strong similarity to
that for three near neighbours. Once the neighbouring atoms are spread uniformly around
the central atom their number is little more that a multiplier on the bandwidth. For six near
neighbours and large disorder the DOS is again similar. However, in this case the top of
the band has risen in energy compared to the perfect lattice because it is easier to satisfy
the phase changes between neighbours in the disordered than in the ordered case.
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Figure 6. The DOS for square-lattice-like structural disorder (ω): (a) ω = 0.0; (b) ω = 0.1; (c)
ω = 0.2; (d) ω = 0.4; (e) ω = 0.7.

Finally, it is possible to perform the calculations for five near neighbours. The ordered
case cannot exist so DOS calculated for that case is spurious, but at larger disorders the
structures can be imagined and the DOS again resembles in shape that for three neighbours.
The interesting case of quasicrystals has been discussed elsewhere using a variant of the
method of this paper [15].

7. Discussion

The electronic structures of structurally disordered models in two dimensions have been
investigated. The convergence of the technique as a function of matrix size has been
demonstrated for a chosen disorder value (ω = 0.1). It was found that the DOS remained
consistent above the matrix size of 101× 101 which was easily solvable and that a full
calculation required a few a hours of workstation speed computer time.

The variation of the DOS with respect to the disorder parameter (ω) has been observed.
Our results for these cases showed good agreement with theoretical expectation and so we
have some evidence for the accuracy of our method. It was argued by Haydock [18] that
a better approximation for perfect lattices makes the band edges sharper and improves the
DOS in the bands. This has been observed in our calculations. On the other hand, in the
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disordered cases it was found that the variation of the DOS significantly changed when the
value of disorder (ω) exceeded 0.25 rad. As this value increased to 1.0 rad the weight in the
DOS shifted towards the edges of the bands. We suspect that the shift may be related to the
localization of electrons. However, for small disorder values (ω 6 0.25) we have seen that
the DOS spread towards the gap, and that the sharp edges were reduced in amplitude. It was
argued by Choy [19] that the absence of odd-membered rings allows the DOS to be an even
function ofE, or the absence of even-membered rings allows the DOS to be an odd function
of E. We have, in particular, investigated this argument and have concluded that our results
are consistent with it, remembering that the structural disorder allows even-membered and
odd-membered rings to coexist.

It would be possible to extend this study by going beyond nearest neighbours and
introducing more structural information. However, it is not wholly realistic to assume that
the number of neighbours stays constant as the disorder increases and a preferred extension
of the approach is to allow the number of near neighbours to vary from atom to atom.
Preliminary results suggest that such alloy-like calculations will be possible, allowing more
progress towards realistic potentials in which electrons move in two-dimensional systems.
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